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Abstract

Reduction of volume and neuronal number has been found in several association nuclei of the thalamus in schizophrenic
subjects. Recent evidence suggests that schizophrenic patients exhibit abnormalities in early visual processing and that many of the
observed perceptual deficits are consistent with dysfunction of the magnocellular pathway, i.e. the visual relay from peripheral
retinal cells to the two ventrally located magnocellular layers of the lateral geniculate nucleus (LGN). The present study was
undertaken to determine whether abnormalities in cell number and volume of the LGN are associated with schizophrenia and
whether the structural alterations are restricted to either the magnocellular or parvocellular subdivisions of the LGN. Series of
Nissl-stained sections spanning the LGN were obtained from 15 schizophrenic and 15 normal control subjects. The optical disector/
fractionator sampling method was used to estimate total neuronal number, total glial number and volume of the magnocellular and
parvocellular subdivisions of the LGN. Cell number and volume of the LGN in schizophrenic subjects were not abnormal. Volume
of both parvocellular and magnocellular layers of the LGN decreased with age. These findings do not support the hypothesis that
early visual processing deficits in schizophrenic subjects are due to reduction of neuronal number in the LGN.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The lateral geniculate nucleus (LGN) of the thalamus
is the major target of retinal ganglion cells and relays
visual information from the contralateral visual field to
the primary visual cortex. The LGN is comprised of six
cellular layers, i.e., two magnocellular layers lying
ventrally and four parvocellular layers located dorsally,
as well as cell-sparse intralaminar layers and a cell-poor
superficial layer that is ventral to the magnocellular
layers. Parvocellular layers transmit information about
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color and object form from the fovial retina to the visual
cortex whereas magnocellular layers carry retinal
signals from peripheral retinal cells that are involved
in spatial recognition and motion detection (Lennie,
1980; Kaplan and Shapley, 1986; Livingston and Hubel,
1988). The magnocellular and parvocellular pathways
correspond loosely to the transient and sustained
channels of visual processing that have been derived
from psychophysical experimentation in human subjects
(Breitmeyer, 1992). These pathways travel in parallel
through the LGN but interact at the level of the primary
visual cortex and in subsequent relays through the dorsal
and ventral visual streams. Thus, although the magno-
cellular and parvocellular pathways project primarily
rved.
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Table 1
Subject demographics a

Normal subjects
(N=15)

Schizophrenic
subjects (N=15)

Student's
T-test

Gender 9M/6F 9M/6F
Age 48.07±10.66 44.53±13.11 t1,28=0.810,

P=0.425
PMI 23.73±9.95 33.80±14.55 t1,28=−2.212,

P=0.035
TF 338.27±234.32 620.73±233.11 t1,28=−3.310,

P=0.003
Brain wt 1501.00±164.12 1471.67±110.89 t1,28=0.578,

P=0.568
pH 6.18+0.25 6.16+0.26 t1,28=1.175,

P=0.250
Hemisphere 8R/7L 9R/6L

PMI = postmortem interval in hours.
TF = storage time in formalin in days.
Brain wt = brain weight in grams.
a Means±S.D.
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into the dorsal and ventral visual streams, respectively,
these functionally distinct visual streams represent an
integrated signal from the two LGN pathways that
encode object localization (dorsal) and object recogni-
tion (ventral).

The most prominent symptoms of schizophrenia are
thought disorder, psychosis, and cognitive dysfunction
(for review, see Carpenter and Buchanan, 1994). Some-
what surprisingly, recent evidence suggests that schizo-
phrenic subjects also have subtle deficits in early visual
processing (Butler et al., 2001, 2002; Green et al., 2003;
Schecter et al., 2003). Moreover, several lines of evi-
dence suggest that perceptual abnormalities associated
with schizophrenia may be channel-specific. The
majority of findings in schizophrenic subjects suggest
that deficits are more prominent in the magnocellular
pathway or in the dorsal stream which would also im-
plicate magnocellular processing (Green et al., 1994a,b;
O'Donnell et al., 1996; Cadenhead et al., 1998; Butler
et al., 2001, 2005; Doniger et al., 2002; Schecter et al.,
2003; Kim et al., 2005;) although some recent evidence
implicates the parvocellular pathway in visual proces-
sing abnormalities associated with schizophrenia (Butler
et al., 2002; Green et al., 2003).

Several abnormalities in structural and neurochem-
ical composition of the visual cortex have emerged
despite its inclusion in many studies only as a “control”
comparison region for the dorsolateral prefrontal cortex
(for review, see Selemon, 2001). These abnormalities
include increased neuronal cell packing density (Sele-
mon et al., 1995), decreased expression of synaptophy-
sin protein and mRNA (Perrone-Bizzozero et al., 1996;
Eastwood et al., 2000), and decreased expression of
RSG4 mRNA, a gene that regulates G-coupled
intracellular signaling (Mirnics et al., 2001). All of
these findings are consistent with reduced connectivity
and diminished synaptic signaling in the visual cortex.

Presently, it is not known whether there are corre-
sponding structural changes in the LGN, and in par-
ticular, whether the LGN may have fewer projection
neurons in schizophrenic patients in comparison to nor-
mal subjects. In vivo neuroimaging studies of schizo-
phrenic subjects have found smaller whole thalamic
volume and altered thalamic shape (Ettinger et al., 2001;
Gilbert et al., 2001; Csernansky et al., 2004), altered
metabolic activity (Buchsbaum et al., 1996; Hazlett
et al., 1999) and reduction of volume in subregions or
specific nuclei of the thalamus (Andreasen et al., 1994;
Byne et al., 2001; Kemether et al., 2003). In addition,
postmortem studies of brains from schizophrenic sub-
jects have reported a reduction in total neuronal number
and volume of individual thalamic nuclei, e.g., the
mediodorsal, anterior, pulvinar and ventral lateral
posterior nuclei (Pakkenberg, 1990; Popken et al.,
2000; Young et al., 2000; Byne et al., 2002; Danos
et al., 2002, 2003). It should be noted, however, that
several studies have not found evidence of thalamic
pathology in schizophrenic subjects (Portas et al., 1998;
Arciniegas et al., 1999; Deicken et al., 2002; Cullen et al.,
2003; Dorph-Petersen et al., 2004; Preuss et al., 2005).
Moreover, all of the thalamic nuclei that have been
implicated in schizophrenia are reciprocally connected
with higher association cortices; therefore, it is not clear
whether thalamic neuronal deficits in schizophrenia
extend to sensory thalamic nuclei, such as the LGN.

The present study was undertaken to determine
whether subjects with schizophrenia had an altered
number of neurons or glia in the LGN and whether, if
structural differences were found, the pathology would
be limited to either the parvocellular or magnocellular
subdivisions of the LGN.

2. Methods

2.1. Brains and histology

Thirty brains from the Stanley Foundation Consor-
tium Collection, 15 schizophrenic and 15 matched
normal control brains, were examined in this study
(Table 1). Schizophrenic patients were diagnosed by
retrospective review of medical records using DSM-IV
criteria by two senior psychiatrists associated with the
Stanley Foundation. A detailed description of donor
selection has previously been reported (Torrey et al.,
2000). Normal control subjects did not have a history of
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psychiatric or neurologic illness, and all brains included
in this study were free of major pathology.

Histological processing of the thalamus was per-
formed by the Stanley Foundation and Dr. Dwight
German's laboratory, University of Texas, Southwest-
ern, as follows. Large blocks containing the entire
thalamus were dissected and embedded in paraffin. The
blocks were subsequently deparaffinized, frozen, and
sectioned coronally at 60 μm. A 1 in 16 series of
sections was mounted on slides and Nissl-stained. Sec-
tions were coded by the Stanley Foundation.

2.2. Stereologic analysis of total number and volume

The total number of neurons and glia in the parvo-
cellular and magnocellular subdivisions of the LGN was
estimated using the optical disector method (Gundersen
et al., 1988). Systematic, random sampling of the LGN
was achieved by sampling every 16th section through
the entire LGN and then applying the fractionator
method of sampling (Gundersen et al., 1988). Note that
the first section containing the LGN essentially
represented a random start for this nucleus since the 1
in 16 series extended throughout the entire thalamus. All
analyses were performed blind to diagnostic status by a
single observer (AB).

Stereologic analyses were conducted by viewing the
sections on a Zeiss Axioskop microscope which had
been fitted with an integrated, computer-guided micros-
Fig. 1. Representative contour drawings of the LGN showing parvocellular l
normal comparison brains (Norm1, Norm2) and two schizophrenic brains (S
copy system and Stereo Investigator (ver. 5.05) software
(MicroBrightfiled, Williston, VT). Prior to the actual
analysis, optimal parameters for counting box size and
sampling grid spacing were determined. Section thick-
ness was measured on slide as ranging from 10–16 μm.
Thus, a counting box dimension of 58 (l)×50 (w)×6 (h)
μm was chosen to maximize the size of the box but still
allow for ≥2 μm guard zones at the top and bottom of
the section. A pilot study was then performed to
determine the grid spacing for the parvocellular and
magnocellular subdivisions that would yield a sampling
coefficient of error (CE)≤0.05 for each area (Gunder-
sen and Jensen, 1987). Optimal sampling grid sizes were
350×275 μm for the magnocellular layers and 600×
400 μm for the parvocellular layers.

In each section, the contours of magnocellular and
parvocellular layers were traced at low power under a
2.5× objective. The borders of parvocellular and magno-
cellular layers were distinguished from the intralaminar
layers and surrounding thalamus by the presence of
large (parvocellular) and very large (magnocellular)
neurons. The interlaminar space was not included in the
contours and therefore intralaminar neurons and glia
were not counted. Sections were then examined under a
high power, 100× oil immersion objective. Neurons
containing a nucleolus that was in focus inside the
counting box were counted; glia nuclei inside the box
were counted as well. Neurons were distinguished from
glia on the basis of morphologic characteristics of the
ayers (black outlines) and magnocellular layers (solid black) from two
chizo1, Schizo2).



Fig. 2. Low power photomicrographs of the LGN. Three representative
sections through the (A) anterior, (B) middle, and (C) posterior LGN
are shown. The LGN is comprised of six cellular layers: two
magnocellular layers (marked with asterisks) lying ventrally and four
parvocellular layers located dorsally, as well as cell-sparse intralaminar
layers and a cell-poor superficial layer that is ventral to the
magnocellular layers. Note that not all four parvocellular layers were
visible in all sections and that individual layers often appeared to be
fused. Scale bar=1 mm.

Fig. 3. High power photomicrographs of (A) parvocellular and (B)
magnocellular subdivisions of the LGN. Typical neurons are indicated
by arrowheads; typical glial cells are indicated by small arrows. Scale
bar=10 μm.
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nucleus including clumping of chromatin and sharper
delineation of the nuclear membrane in glia as illustrated
previously (Selemon et al., 1999). To ensure that
neurons and glia were not overcounted, three exclusion
planes were used: cells crossing the left, front and
bottom surfaces of the box were not counted. The Stereo
Investigator software program also generated an esti-
mated volume for each of the LGN subdivisions
(reported here). Volume of the parvocellular and
magnocellular subdivisions was also measured using
the Cavalieri method. Agreement between the two
methods was very good as shown by high intraclass
correlation coefficients (ICCs) for both parvocellular
(0.95) and magnocellular layers (0.94).

Recounts of the magnocellular layers in all 30 cases to
assess the reliability of the counts yielded the following
ICCs: neuronal number (0.97), glial number (0.86), and
volume (0.93). ICCs for recounts of the parvocellular
layers in 7/30 cases were excellent: neuronal number
(0.97), glial number (0.97), and volume (0.96).

2.3. Statistical analyses

Statistical analyses were used to test the hypothesis
that total number of neurons, total number of glia, and/or
volume of the LGN differed between schizophrenic
subjects and normal comparison subjects. Data were
tested for normality prior to analysis usingKolmogorov–



Table 2
Group means (S.D.)

Control
subjects

Schizophrenic
subjects

% Change Statistics a

Parvocellular
Neurons 2,865,936

(691,183)
2,955,790
(747,735)

+3% F(1,27)=0.03,
P=0.86

Glia 963,574
(273,034)

863,123
(280,113)

−10% F(1,27)=1.95,
P=0.17

Volume b 67.12
(10.71)

65.42
(14.03)

−3% F(1,27)=1.22,
P=0.28

Magnocellular
Neurons 536,689

(119,387)
594,981
(151,013)

+11% F(1,27)=0.91,
P=0.35

Glia 199,338
(53,479)

196,947
(53,347)

−1% F(1,27)=0.25,
P=0.62

Volume b 12.55
(2.46)

13.69
(2.85)

+9% F(1,27)=0.69,
P=0.41

a Based on one-way ANCOVAwith age as a covariate.
b In mm3.
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Smirnov test statistics, and normality was confirmed.
Mixed models were used to evaluate each outcome. All
analyses were considered statistically significant at
Pb0.02 after application of a Bonferroni correction for
multiple tests. Data were analyzed using SAS, ver. 9.1
(SAS Institute Inc., Cary, NC). Data are presented as
mean±standard deviation of the mean.
Fig. 4. Graphs of total neuronal number, total glial number, and volume in
normal control subjects (Norm, open circles) and schizophrenic subjects (Sc
In the primary analysis, in which all subjects were
included, neuronal number, glial number and volume
represented the dependent variables, group (control
subjects, schizophrenic subjects) and gender were
included as between-subject effects, and region (parvo-
cellular, magnocellular) was included as a within-subject
explanatory factor. Subject was used as the clustering
factor. All 2- and 3-way interaction effects were tested.
Age, postmortem interval (PMI), storage time in formalin
(TF), and brain weight were considered as potential
covariates in the models. Age was significantly associ-
ated (inversely) with volume (F1,24=15.3, P=0.007) but
not with the other outcomes (PN0.41 for neuronal
number and PN0.06 for glial number) and therefore was
retained as a covariate in the model for analysis of
volume. Although brain weight was not significantly
associated with any of the variables (PN0.49 for all),
analyses were performed covarying for brain weight.
Similar results were found for secondary analyses.

In secondary analyses, subjects were limited to (1)
brain samples from left hemispheres (7 control subjects,
6 schizophrenic subjects), (2) brain samples from right
hemispheres (8 control subjects, 9 schizophrenic sub-
jects) (3) subjects without alcohol/abuse scores above 3
(15 control subjects, 10 schizophrenic subjects), (4) schi-
zophrenic subjects that committed suicide and controls
the parvocellular layers (above) and magnocellular layers (below) in
hizo, filled circles).



Fig. 5. Graphs of correlations between volume and age but not
neuronal number of glial number and age in the parvocellular
subdivision of the LGN. A similar correlation between volume and
age was found for the magnocellular subdivision (not shown).
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(15 control subjects 4 schizophrenic subjects), and
(5) non-suicidal schizophrenic subjects and controls
(15 control subjects, 11 schizophrenic subjects). As
one LGN from a schizophrenic subject spanned fewer
coronal sections than all other brains (see Section 3),
all analyses were repeated with the exclusion of this
case.

3. Results

3.1. Qualitative observations

The LGN was present in seven to nine coronal
sections (Fig. 1), approximately 910 μm apart, and thus
spanned 6.7–8.6 mm in the anterior–posterior axis. The
only exception was one schizophrenic brain that only
spanned four coronal sections. Not all four parvocellular
and two magnocellular layers were visible in all
sections, and the parvocellular layers often appeared to
be fused along a portion of their dorso-ventral
boundaries (Fig. 2). Neurons in the parvocellular
subdivision were oblong or triangular in shape (Fig.
3A); magnocellular neurons were similarly shaped but
larger (Fig. 3B). Both parvocellular and magnocellular
neurons featured a pale nucleus with a prominent
nucleolus. Glia were easily distinguished from neurons
by their small, round dark profiles (Fig. 3A,B).

3.2. Total cell number

The number of profiles counted in each subdivision
was as follows: parvocellular neurons, average 1027.00
(range 827–1251); parvocellular glia, average 335.76
(range 231–560); magnocellular neurons, average
502.55 (range 357–662); magnocellular glia, average
335.76 (range 231–560). Estimated total neuronal
number and total glial number for the parvocellular
and magnocellular divisions of the LGN for schizo-
phrenic and control subjects are shown in Table 2.
Statistical analysis of all subjects in the primary analysis
indicated that there were no significant group or group
interaction effects (PN0.23) for neuronal number or
glial number in either subdivision of the LGN (Table 2;
Fig. 4). Likewise, secondary analyses did not indicate
any significant group effects. A significant effect of
region on cell number was present in the primary
analysis (neuronal number: F1,26=387.1, Pb0.001;
glial number: F1,26=247.49, Pb0.001) and in all
secondary analyses. This reflected the fact that the
parvocellular layers of the LGN contained five times as
many neurons and glia in comparison to the magnocel-
lular layers (Table 2).
3.3. Volume

Volumes of the parvocellular and magnocellular
divisions of the LGN did not differ between groups in
the primary analyses (PN0.39; Table 2) nor in
secondary analyses. There was a significant effect of
region on volume (F1,26 = 704.24, Pb0.001). In
addition, age showed a significant effect on volume
of both parvocellular and magnocellular layers in the
primary analysis (F1,24=14.95, Pb0.001) (Fig. 5) and
in all secondary analysis except that limited to the right
hemispheres (F1,12=3.92, P=0.07). In the secondary
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analysis limited to left hemispheres, a trend region by
gender interaction was found for volume of the LGN
(F1,14=6.29, P=0.025) due to gender differences
within the parvocellular region (F1,15=7.93, P=0.013).
This gender difference, which must be considered
preliminary, needs to be replicated in a larger sample of
brains.

4. Discussion

4.1. Comparison with stereologic analyses in human
and non-human primates

To our knowledge, stereologic analysis of total cell
number has not been performed in the adult human LGN
prior to the present study. A previous study of adult
human LGN volume (Andrews et al., 1997) found larger
mean volumes for parvocellular (90.42 mm3) and
magnocellular (28.03 mm3) layers than measured in
the present study. The discrepancy probably is due to
differential shrinkage resulting from differing postmor-
tem processing methodologies in the two studies. The
one study of total cell number in the human LGN, which
examined only 2 late-gestational fetuses and utilized
non-stereologic methods, found total neuronal counts in
LGN of 1.68 million (Khan et al., 1993). LGN volume
and neuronal number exhibit a high degree (at least two-
fold) of variability among individuals (Spear et al.,
1996; Andrews et al., 1997, present study) so that any
estimate of neuronal number based on two cases might
be skewed far from the true mean. Estimates of total cell
number based on stereologic methods are independent
of measured volume, cell size and section thickness
and therefore can more reliably be compared across
studies.

Several studies in non-human primates have utilized
stereologic cell counting methods to estimate the
number of neurons in the normal, young adult LGN
either as a control for experimental manipulation
(Berman et al., 1998; Boire et al., 2002), development
(Williams and Rakic, 1988), aging (Ahmad and Spear,
1993), or as a primary interest (Sunner and Rakic, 1996;
Blasco et al., 1999). Despite differences in methodology
and species examined, these studies are generally in
agreement in estimating approximately 1.4 million
neurons in the whole LGN; neuronal number in the
pigtail monkey (1.79 million) was slightly higher
(Blasco et al., 1999). In the present study, we estimated
approximately 2.5 times as many neurons (3.4 million;
range 2.5–5.1 million) in the combined parvocellular
and magnocellular subdivisions of the human LGN
compared to the non-human primate LGN.
4.2. Comparable cell number in schizophrenic and
control subjects

The present study failed to find differences in
neuronal or glial cell number in the LGN of schizo-
phrenic subjects in comparison to normal subjects and
therefore does not support hypothesis that early visual
processing deficits in schizophrenia can be attributed to
cell loss in the LGN. As reduction of thalamic volume
and neuronal number has been described in several
association nuclei of the thalamus, including the
mediodorsal, anterior, pulvinar, and ventral lateral
posterior nuclei (Pakkenberg, 1990; Popken et al.,
2000; Young et al., 2000; Byne et al., 2002; Danos
et al., 2002; 2003), one possible explanation for the
absence of cell loss in the LGN is that neuronal
pathology in schizophrenia is restricted to nuclei with
reciprocal connections to higher association cortices. It
should be noted, however, that none of the postmortem
studies that have described neuronal deficits in schizo-
phrenic patients examined brains from the Stanley
Foundation, the cohort that was analyzed in the present
study. Therefore, it is also possible that thalamic
pathology is not inherent to this particular schizophrenic
cohort. Thalamic pathology has not been a universal
finding in schizophrenia. Several in vivo imaging and
postmortem studies have failed to find abnormalities in
thalamic volume or neuronal number in schizophrenic
subjects (Portas et al., 1998; Arciniegas et al., 1999;
Deicken et al., 2002; Cullen et al., 2003; Dorph-Petersen
et al., 2004; Preuss et al., 2005). Moreover, recent
neuroimaging analyses of the hippocampus (Csernansky
et al., 2002) and thalamus (Csernansky et al., 2004) in
the same cohort of schizophrenic subjects has indicated
that pathology of one or the other structure may be more
pronounced in different individuals (Csernansky, per-
sonal communication).

Alterations in glial number were not found in the
schizophrenic group in comparison to normal controls.
This is somewhat surprising given the prominence of
glial abnormalities in the Stanley Foundation cohort
uncovered in the prefrontal cortex and hippocampus by
proteomic and immunocytochemical analyses (John-
ston-Wilson et al., 2000; Webster et al., 2001). However,
we did not distinguish different classes of glial cells, e.g.,
astrocytes, oligodendrocytes, and microglia, and there-
fore a selective alteration in one of these morphologic
classes might have gone undetected in the present study.

There were no significant differences in volume
between schizophrenic and control groups in the present
study for either subdivision of the LGN. Mean volume of
the magnocellular layers was larger in the schizophrenic
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cohort than in controls, although the difference was not
significant and did not even represent a trend.We attribute
the higher mean to variability in the human LGN between
individuals and to the fact that this variability was
probably exaggerated in the magnocellular LGN because
of the small size and convoluted shape of the layers.

4.3. Clinical context of visual deficits in schizophrenia

The present study addressed the question of whether
early visual processing deficits are associated with
anatomic abnormalities in the LGN. It should be em-
phasized that visual deficits are not prominent in
schizophrenic subjects and in fact have only been
manifested with extensive psychophysiologic testing
(e.g., Javitt et al., 1993; Renshaw et al., 1994). The
cardinal symptoms of schizophrenia, which include
thought disorder, positive symptoms of hallucinations
and delusions, and negative symptoms such as flattened
affect and anhedonia, all involve higher order cognitive
and emotional processing circuits (for review, see
Carpenter and Buchanan, 1994). Perhaps it is not
surprising that anatomic deficits were not detected in the
LGN of schizophrenia subjects given that anatomic
abnormalities tend to be subtle even in the prefrontal and
medial temporal cortices, two brain regions that have
been strongly implicated in the pathophysiology of
schizophrenia (Selemon, 2001). A number of studies
indicate that heteromodal areas of the association cortex,
including the prefrontal cortex, are key sites of
pathology in the schizophrenic brain (Pearlson et al.,
1996; Barch et al., 2001; Selemon, 2001). Thalamic
nuclei that are reciprocally connected with heteromodal
cortical areas have been shown to be smaller and have
fewer neurons in schizophrenic subjects (Pakkenberg,
1990; Popken et al., 2000; Young et al., 2000; Byne
et al., 2002; Danos et al., 2002, 2003); however, our
analysis suggests that the LGN does not exhibit
comparable reductions in volume and neuronal number.

4.4. LGN volume decreases with age

Volume of both subdivisions of the LGN showed a
marked inverse correlationwith agewhereas neuronal and
glial numbers were not correlated with age. Although a
rather speculative interpretation, these data could indicate
that aging is associated with a decrease in the neuropil
compartment of the LGN rather than loss of neurons and
glia; more direct studies of dendritic architecture and
synaptic number are required to validate this interpreta-
tion. Since neuropil is comprised of dendrites, axons,
synapses and glial processes, decreases in these cellular
elements would be consistent with a reduction in neuronal
connectivity. Previous morphometric studies of human
retinal ganglion cells have found moderate (15–50%),
age-related reductions in the number of retinal ganglion
cells that were dependent on the distance from the fovea
and were highly variable between individuals (Gao and
Hollyfield, 1992; Curcio and Drucker, 1993). The
observed reduction in retinal projection neurons, which
is consistent with the proposed loss of neuropil in the
LGN, suggests that there may be a reduction in retinal
afferent input to the LGN in aged human subjects. There
are no other quantitative studies of the aged human LGN
for comparison with the present findings, and only one
study (Ahmad and Spear, 1993) has examined age-related
changes in the non-human primate LGN. In the non-
human primate, neuronal and glial numbers were not
altered in aged monkeys; however, neuronal density was
decreased with age due to a small, non-significant
increase in LGN volume and associated neuropil. The
latter finding differs from our observation of decreased
LGN volume with age in the human and raises the
possibility of significant species differences in the aging
process. Studies of human visual function in aged subjects
have uncovered age-related deficits, e.g., in visual acuity
and in spatial and temporal contrast sensitivity, that cannot
be attributed to ocular changes (Spear, 1993). The present
findings suggest that the structural underpinnings of this
age-related visual decline may include reduction of LGN
volume.

4.5. Summary

Stereologic analysis of the LGN in schizophrenic
subjects in comparison to normal controls did not
uncover evidence of a reduced number of neurons or
glia in the diseased subjects. These negative findings do
not support the hypothesis that the early visual
processing deficits described in schizophrenic subjects
are related to reduced neuronal number in the thalamic
visual relay nucleus. However, we cannot rule out the
possibility that more subtle changes in structural archi-
tecture of the LGN might account for the visual abnor-
malities associated with schizophrenia.
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