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Abstract—In large-deformation diffeomorphic metric mapping
(LDDMM), the diffeomorphic matching of images are modeled as
evolution in time, or a flow, of an associated smooth velocity vector
field controlling the evolution. The initial momentum parame-
terizes the whole geodesic and encodes the shape and form of the
target image. Thus, methods such as principal component anal-
ysis (PCA) of the initial momentum leads to analysis of anatomical
shape and form in target images without being restricted to small-
deformation assumption in the analysis of linear displacements. We
apply this approach to a study of dementia of the Alzheimer type
(DAT). The left hippocampus in the DAT group shows significant
shape abnormality while the right hippocampus shows similar pat-
tern of abnormality. Further, PCA of the initial momentum leads
to correct classification of 12 out of 18 DAT subjects and 22 out of
26 control subjects.

Index Terms—Alzheimer’s disease, geodesic, LDDMM, mo-
mentum, PCA.

I. INTRODUCTION

AN important task in the field of computational anatomy
(CA) [1] is the study of neuroanatomical variability. In

CA, the anatomic model is a quadruple consisting
of the template coordinate space, defined as the union
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Fig. 1. Diffeomorphic flow.

of 0-D, 1-D, 2-D, and 3-D manifolds, a set of
diffeomorphic transformations on , the space of anatomies,
is the orbit of a template anatomy under , and the family
of probability measures on . In this framework, a geodesic

is computed where each point , is a
diffeomorphism of the domain . The evolution of the template
image along the path is given by such that the
end point of the geodesic connects the template to the target

via . Thus, anatomical variability in
the target is encoded by these geodesic transformations when
a template is fixed. Fig. 1 illustrates a schematic of the large
deformation trajectory followed by a particle and
its associated velocity vector field .

Until now, we have been using displacement vector fields,
between the target and the template obtained from

the matching transformation via , where
is the identity transformation on such that .

These differences have been used to make statistical inferences
(for work on Alzheimer’s disease (AD), see [2]–[7]). While the
transformations that we have been computing follow the large
deformation approach in that they are the result of the evolution
of a smooth time-dependent velocity vector field, the final shape
analysis via linearizing around template coordinates using dis-
placement vector fields has provided a practical basis for this
approach [1].

Recent work in understanding diffeomorphic flows [8]–[10]
has provided computational tools for comparing these geodesic
transformations and deriving a fundamental “conservation of
momentum” property of these geodesics. This property applies
the general theory on invariant Riemannian metrics on trans-
formation groups [11], and provides the theoretical background
for parameterizing the entire geodesic by the initial momentum
with which the optimal trajectory emanates from the template
image coordinates to reach the target image. Anatomical sub-
manifolds can now be compared by performing linear statistics
on these initial momentum. This was illustrated by diffeomor-
phic mapping of surface submanifolds of the human heart [12]
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in volume space and face [13] in point space (sparse 1-D land-
mark sets) rather than volume.

In both [12] and [13], intrinsic average anatomies were con-
structed from the population under study and the population
variation was studied as characterized by linear statistics. In this
paper, we present diffeomorphic mappings of 3-D volumetric
manifolds (hippocampus) and the linear statistics with discrim-
ination on the initial momentum in the context of dementia of
the Alzheimer type (DAT).

II. METHODS

A. Large-Deformation Diffeomorphic Metric Mapping
(LDDMM)

We have been estimating diffeomorphisms for template
matching via the basic variational problem that, in the space of
smooth velocity vector fields on domain , takes the
form [9]

(1)
The optimizer of this cost then generates the optimal change
of coordinates upon integration ,

, where the superscript in is used to explicitly
denote the dependence of on the associated velocity field .
Enforcing a sufficient amount of smoothness on the elements
of ensures that the solution to the differential equation

, , is in the space of diffeomorphisms
[14, 15]. The required smoothness is enforced by defining the
norm on through a 3 3 differential operator of the type

where in 3-D space such that
, and is the standard norm for square

integrable functions defined on . The differential operator
has periodic boundary conditions on a rectangular domain .
The gradient of this cost, in , is given by

(2)

where and , is the determinant
of the Jacobian matrix and is a compact self-adjoint operator

uniquely defined by
such that for any smooth vector field ,
holds. The notation is also used. The
parameter in (1) provides weighted optimization between the
regularization and the data matching components, and is chosen
to be the same for all matchings.

B. Comparison Between LDDMM and Christensen’s Greedy
Algorithm

Large deformation flows first put forth by Christensen et.al.
[16] generate paths through the space of diffeomorphisms
matching the corresponding images. This algorithm exploits
the fact that if the operator is not differentiable in time,
then the space-time is discretized into a sequence of
time-indexed optimizations. The algorithm then solves for the

locally optimal velocity at each time point and then forward
integrates the solution. This is only a locally-in-time optimal
method (therefore, the term “greedy”) reducing the dimension
of the optimization. The transformation matching the
images is generated from velocity fields whose computation
can be interpreted as following the variational Riemannian
gradient of the data term in (1) [17]

(3)

This Riemannian (sometimes called “natural”) gradient
in the space of diffeomorphisms is given by

(4)

where and . The time-indexed sequence
of locally optimal velocity fields are integrated to yield the
sequence of transformations , , which are
points along a path on the manifold of diffeomorphisms from
the identity transformation to matching the given images.
The regularization provided by the smoothing operator gives
this gradient numerically stable behavior in finite time.

The main difference between the greedy and the LDDMM
algorithms is that the path generated by the greedy method
does not correspond to any global variational problem solution
given by (1). As a result, the greedy method in general will not
generate the shortest path connecting the images through the
space of diffeomorphisms. Further, unlike LDDMM, the greedy
method cannot generate metric distances between objects in
the orbit [9], [18]. Metric distances between objects generated
by LDDMM will be the focus of another paper. For in-depth
comparison of these two algorithms, refer to [9].

C. Initial Momentum: Geodesic 3-D Evolution

The LDDMM algorithm, which is based on following a gra-
dient in space of time-dependent smooth velocity
fields, has yet another important distinction with respect to the
greedy algorithm. The LDDMM geodesic follows the property
of conservation of momentum [10] that is not shared by the
locally optimal paths generated by the greedy algorithm. This
property takes the form

(5)

where denotes the momentum of the evolving tem-
plate transformation at time . The knowledge of the initial mo-
mentum with which the template coordinates evolve
at completely specifies the full geodesic connecting
the given template and target imagery [10]. Hence, the initial
momentum encodes the shape and form of the target. As also
shown earlier [13] in the context of diffeomorphic evolutions of
landmarks, linear combinations of momenta when propagated
through the diffeomorphic evolution equations guarantee that
the computed transformations will be diffeomorphic. The
linearizing model encodes transformations via displacement
fields in the coordinates of the fixed template. Transformations
encoded this way are not guaranteed to remain diffeomorphic,
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hence, the transformed template is not guaranteed to remain in
the anatomical shape space as fusions, fold-overs and tears of
anatomical structures can occur in this setting. In contrast, the
LDDMM geodesic following the conservation of momentum
whereby the matching transformations are completely encoded
by the initial momentum in the template coordinates gives a
powerful tool for studying shape variation, overcoming the
restrictive assumption of linear displacement model and giving
due consideration to the nonlinearity of the anatomical shape
space. In particular, this allows linear techniques such as prin-
cipal component analysis (PCA) to be applied to statistical
analysis of the initial momentum that encodes the target shape.

D. PCA on the Initial Momentum

Hitherto we have used the linear displacement vector fields to
computePCAfor theanalysisofhippocampal shape [4], [7], [19].
However,displacementvectorfieldsdonotnecessarilyleadtodif-
feomorphic transformations, therefore, the assumption of small
deformation had to be made [1]. To date, this assumption has not
been severely tested since all of our study cases involved differ-
ence or changes in the hippocampus were not very large.

However, when the small-deformation assumption is re-
moved, linear combination of the principal components

may breakdown when cross-subject differ-
ences are large [13]. That is, under mapping structures may
not be able to relate to the template via a diffeomorphism.

We now extend the construction of orthonormal basis func-
tions (i.e., PCA) of linear displacements on surface manifolds by
Joshi [19] to PCA of initial momentum [see (5)] on volume man-
ifolds [12]. Instead of performing PCA analysis under the
metric, we perform it with respect to the metric in space used
for the estimation of the flow, i.e.,

, , , the Hilbert space of smooth velocity
vector fields. Thus, PCA is applied on the quantity

Let be the template volume manifold in (e.g.,
3-D volumetric representation of the hippocampus). It follows
that if , , is assumed
to be a family of zero-mean1 Gaussian random vector fields on
the manifold with a covariance structure ,

, then the integral equation

(6)

has a solution of a set of orthonormal functions
, that is the minimizer of

the following minimum mean-square error problem:

(7)

where

(8)

1In practice we subtract the mean from the vector fields first.

and is the measure on the manifold . The proof [20] fol-
lows the standard Karhunen-Loève expansion [21]. This is the
PCA, where is projected onto a subspace spanned by the
orthonormal basis functions , such that the
residual error between and the projection
is minimized [see (7)]. The set of scalars , ,
are the principal component values.

In discrete image space, the integral (6) becomes, at each
voxel

(9)

where is the measure around voxel (i.e., voxel size) and
is the sample

covariance.
The orthonormal basis is computed via

the singular value decomposition (SVD) of as follows [19].
Let be the matrix of the vector fields with the mean subtracted,
containing rows and columns ( -D
image points, , ; for an image
space of 64 112 64 voxels, ), then the SVD
of is defined as , where ,
and is a diagonal matrix consisting of the singular values
of . The singular values are related to the eigen-decompo-
sition of as follows. We re-write the sample covariance as

. From the SVD equation of
we see that . Thus, the eigenvectors of are
the column vectors of up to a constant scaling factor, and the
eigenvalues of the square matrix are the squares of the sin-
gular values of , up to a constant scaling factor. The matrix
represents a directional component which is essentially ignored
in the eigen-decomposition of .

The first , , principal components (whose
values are , ,

) that account for majority of the total variance
(e.g., ) are used in a nonparametric permutation test to
determine if the shape of the hippocampus as represented by
these principal components are statistically different between
the subject groups.

E. Nonparametric Statistical Test

Let and

be the sample means of the first

principal component values for each group, and the pooled
(common) sample covariance. To test the null hypothesis

we compute the Hötelling’s statistic [22] (for two samples)
as

(10)
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The significance of group variation is measured in a permutation
test as follows.

In Fisher’s method of randomization, for all permutations
of the given two groups, new means and covariances are cal-
culated. Monte Carlo simulations are used to generate a large
number of uniformly distributed random permutations (a typical
number is 10 000). The collection of statistics from each per-
mutation gives rise to an empirical distribution according
to

(11)

The null hypothesis that the two groups have equal distributions
is rejected when

(12)

falls below a predefined significance level (e.g., 0.05).

F. Subjects and Scans

The neuroanatomical template is produced using an MR
image from an elder control subject. The subject selected to
produce this template is obtained from the same source as the
other subjects in the study, but is not otherwise included in the
data analysis. The left and right hippocampi in this template
scan have been manually segmented by a team of experts using
methods previously described [23]. A more detailed anatomical
description of the hippocampus as outlined in MR was also
given in App. A of [24].

The initial hippocampal data used in this study came from our
previously published longitudinal study of hippocampal atrophy
in early DAT [4], where 18 very mild DAT (Clinical Dementia
Rating Scale [25], CDR 0.5) subjects and 26 age-matched non-
demented (CDR 0) controls had two MR scans approximately
two years apart. To obtain the rating, an experienced clinician
conducted semi-structured interviews with an informant and the
subject to assess the subject’s cognitive and functional perfor-
mance; a neurological examination also was obtained. The clin-
ician determined the presence or absence of dementia and, when
present, its severity with the Clinical Dementia Rating (CDR),
where CDR 0 indicated no dementia and CDR 0.5, 1, 2, and 3
indicated very mild, mild, moderate, and severe dementia [25].
The clinical diagnosis of DAT was in accordance with standard
criteria and was verified by the neuropathologic diagnosis of AD
in 93% of cases [26]. Although elsewhere the CDR 0.5 individ-
uals in our sample may be considered to have mild cognitive im-
pairment [27], they fulfill our diagnostic criteria for very mild
DAT and at autopsy overwhelmingly have neuropathologic AD
[28].

The mean [standard deviation (SD)] age for the CDR 0
group was 73 (7.0) years, and for the CDR 0.5 group, 74 (4.4)
years. The gender distribution (M/F) of the subjects was CDR
0: 12/14, CDR 0.5: 11/7. The mean (SD) sum-of-boxes scores
for the CDR 0 group was 0.02 (0.10), and for the CDR 0.5
group, 2.0 (1.3). All subjects had MR scans approximately
two years apart—the mean scan interval for the CDR 0 group

TABLE I
VALIDATION 1—MATCHING ERRORS BETWEEN EACH ALGORITHM AND THE

SAME SET OF MANUAL SEGMENTATIONS. STUDY 1: FIVE SCHIZOPHRENIA

AND FIVE CONTROL SUBJECTS (MR DATA TAKEN FROM [23]). STUDY 2: FIVE

DEMENTIA OF THE ALZHEIMER TYPE (DAT) AND FIVE CONTROL SUBJECTS

(MR DATA TAKEN FROM [3])

was 2.2 years (range 1.4–4.1 years), and for the CDR 0.5
group, 2.0 years (range 1.0–2.6 years). The scans were ob-
tained using a Magnetom SP-4000 1.5 Tesla imaging system,
a standard head coil, and a magnetization prepared rapid
gradient echo (MPRAGE) sequence. The MPRAGE sequence
(TR/TE—10/4, ACQ—1, Matrix—256 256, 180 slices,
Scanning time—11.0 min) produced 3-D data with a 1 mm
1 mm in-plane resolution and 1 mm slice thickness across the
entire cranium.

In that study, baseline hippocampal surfaces were generated
based on Christensen’s greedy algorithm implementation of the
diffeomorphic mapping from the above template. A comparison
between the two groups at baseline is illustrated in Fig. 4 (1a)
and (1b). The comparison is based on the surface displacement
between each subject and the template, and computing the
-scores between the two subject groups. It has been shown that
this pattern can be explained in terms of known AD pathology
[4], [7].

In this study, we apply LDDMM to each template-target sub-
ject pair, taken from [4] at baseline to generate geodesics. To
do so, the individual hippocampal surfaces already generated in
each subject’s scan are scaled by a factor of 2 and aligned with
the template surfaces, similarly scaled, via a rigid-body rota-
tion and translation. These surfaces are then converted into vox-
elized binary segmentations of dimension 64 112 64 which
have isotropic voxel resolutions of 0.5 0.5 0.5 . After
smoothing by a Gaussian filter (9 9 9-voxel window and
1-voxel standard deviation), the voxelized binary segmentations
have real intensity values ranging from 0 to 255. Then LDDMM
is applied to each template-subject pair. Geodesics and initial
momenta are generated as a result for each subject in the tem-
plate coordinate space. PCA is then performed on these initial
momenta after the mean has been subtracted.

III. RESULTS

A. Validation 1: LDDMM Versus Greedy Algorithm

We have previously validated the accuracy of the automatic
segmentations of the greedy algorithm by comparing with ref-
erence segmentations generated by trained individuals [23]. For
measuring the accuracy, we define an error between positive
summable functions [29], [30] (i.e., segmentations) as follows.
Let and be reference manual and automated segmentations
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TABLE II
VALIDATION 2—CORRELATIONS BETWEEN INITIAL VELOCITY VECTOR FIELDS (v ) AND DISPLACEMENT VECTOR FIELDS (u). AFTER ADJUSTING FOR MULTIPLE

COMPARISONS, THE NUMBER OF SURFACE VERTICES THAT SHOW SIGNIFICANT CORRELATION IS SHOWN AS A PERCENTAGE OF TOTAL NUMBER OF SURFACE

VERTICES

of the image, respectively, such that each of the -compart-
ments is labeled with a tag ranging from 1 to . For example, let

, then , , .
Let and be the posteriori probabilities of
labeling at voxel for the reference manual and the auto-
mated segmentation, respectively. Then the tissue classifi-
cation error between the two segmentations is defined as

(13)

In the case of perfectly overlapping labeling of voxels, .
In reality, is a measure of the cost of mislabeling the voxels
with respect to the reference manual segmentation.

We compute the errors for each algorithm, i.e., LDDMM
and greedy algorithm with respect to the same set of manual seg-
mentations. Automated segmentations via the greedy algorithm
have been obtained previously [3], [23] using established pro-
tocols. Briefly, these mapping protocols involve a first step of
coarse alignment of the region of interest (containing the hip-
pocampus) based on manually delineated landmarks between
the template and the target scans [31], and a second step of
ap-plying the greedy algorithm to the MR subvolume of the
region of interest. The template hippocampal segmentation is
carried forward through the concatenation of the two steps into
the target scan, resulting in automated segmentation of the hip-
pocampus. To compare LDDMM and the greedy algorithm, we
replace the greedy algorithm in the second step with LDDMM.
Table I shows that the two algorithms produce automated seg-
mentations that are comparable.

B. Validation 2: Initial Velocity Vector Fields vs Linear
Displacement Vector Fields

We have already demonstrated that differences due to DAT
in brain structures such as the hippocampus could be observed
by analyzing the displacement vector fields between the DAT
and control subjects [3], [4]. Since the initial velocity field
from the template parameterizes the entire geodesic [13], [32],
we should expect the final displacement to be highly corre-
lated with the initial velocity . Since the initial velocity vector
fields are computed on the 3-D volumetric submanifold ,
and the displacement vector fields from [4] are computed on
the 2-D surface submanifold (the triangulated surface around
the boundary of ), we interpolate onto the surface for

computing the correlation. The displacement vector fields are
computed also on the surface, by taking the difference between
each target point and its corresponding starting point.

At each surface point, we compute the Spearman rank-order
correlation between the surface-interpolated and surface dis-
placement in , , and directions. Since possible outlying
points well away from the main body of the data could unduly
influence the calculation of the correlation coefficient, a non-
parametric procedure, due to Spearman, is to replace the obser-
vations by their ranks in the calculation of the correlation coef-
ficient. The Rank Correlation test is a distribution free test that
determines whether there is a monotonic relation between two
variables. A monotonic relation exists when any increase in one
variable is invariably associated with either an increase or a de-
crease in the other variable. Significance of correlation is ad-
justed to be (the left
and right surfaces have a total of 12167 points). Table II summa-
rizes the correlations in the , and directions. The correla-
tions are visualized on the template surface in Fig. 2, where the
significant correlations are painted as a flame scale onto each
surface point. Surface points for which correlations are not sig-
nificant are painted yellow-green.

C. PCA and Statistics on

Permutation tests are performed on the left- and right-hand
sides separately. For the left hippocampus, the first 20 principal
components accounting for 82.9% of the total variance are used.
For the right hippocampus, the first 20 principal components
accounting for 80.5% of the total variance are used.

In Fig. 3 (3a) and (3b), we plot the empirical distribution
from randomized Hötelling’s test with 10 000 group per-
mutations, between the CDR 0 and CDR 0.5 subjects. The
values shown are calculated from (12). There is a group differ-
ence on the left-hand side but no group difference
on the right-hand side .

The principal component values of the left hippocampus are
then used in a “leave-one-out” logistic regression classification
procedure that selects subsets of principal components that dis-
criminate the two subject groups [33]. Logistic regression anal-
ysis is often used to investigate the relationship between discrete
responses (e.g., success or failure; normal, mild or severe) and
a set of explanatory variables [34], [35]. It fits linear logistic
regression models for discrete response data by the method of
maximum likelihood. In the stepwise procedure, at each step the
candidate explanatory variable with the largest statistic that
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Fig. 2. Correlations between displacement vector fields (u) and initial velocity vector fields (v ). Only the surface vertices that show significant correlation were
colored according to the correlation, others were colored as yellow-green. Top, middle and bottom row shows correlation between v and u along the x, y, and z

axes, respectively. Column a shows dorsal view (from the top) and column b shows ventral view (from the bottom) of the hippocampus.

satisfies a predetermined selection criterion (e.g., ) will
be selected into the model. At each step among the selected vari-
ables, the one with the smallest statistic that satisfies a pre-
determined exclusion criterion (e.g., ) will be removed
from the model. The logistic regression procedure terminates
when no more variables satisfy the inclusion or removal criteria.
Using the solution of left-side principal components 2, 11, 14,
(likelihood ratio: , , ) to discrimi-
nate the two groups with correct classification rate of 84.6% (22
out of 26) for the CDR 0 group and 66.7% (12 out of 18) for the
CDR 0.5 group.

To assess the stability of the discriminating solution sets, we
randomly divided each clinical group into 9 subgroups of 2 to
3 subjects each. This creates 9 trials. In each trial, we use the
90% majority of the subjects from each clinical group in a step-
wise “leave-one-out” logistic regression procedure that selects a
subset of the principal components. We then classify the smaller
set of subjects according to the subset solution. Across 9 trials,
the principal component (PC) 2 is selected each time; PC 11 six
times; PC 14 six times; and PC 12 three times. The overall rate
of correct classification across the nine trials is 81.1% (92.6%
for CDR 0 and 66.7% for CDR 0.5 subjects).
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Fig. 3. PCA of Lv . Row (1) shows the distribution of eigenvalues for all eigenfunctions. Row (2) shows the distribution of mean coefficients (CDR 0 and CDR
0.5 groups) associated with the first 20 principal components. Row (3) shows the permutation tests for group differences using the first 20 principal components.
The p values shown are calculated from [see (12)]. Also shown are: 1) F̂ (T ) value (solid blue line) of the Control-versus-DAT group comparison; 2) theoretical F
-distribution (solid red curve) with (20,23) degrees of freedom superimposed on the empirical distribution; 3) p = :05 (red dotted line) and p = :01 (red dot-dash
line) for reference. Column (a) is for the left hippocampus where the first 20 principal components account for 82.9% of the total variance. Column (b) is for the
right hippocampus where the first 20 principal components account for 80.5% of the total variance.
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Fig. 4. Visualization of the pattern of hippocampal deformities in subjects with very mild DAT (CDR 0.5) compared with nondemented subjects (CDR 0) (Data
taken from [3]). The flame coloring represents the z -scores between the two groups of subjects. Inward variation of the hippocampal surface is represented by
cooler colors (i.e., blue to purple), while outward variation is represented by warmer colors (i.e., orange to red). In (1a) the pair of hippocampal surfaces are shown
from above, with the head of the hippocampus pointing toward the bottom edge of the figure panel, and the left hippocampus is on the right-hand side of the
panel. In (1b) the hippocampal surfaces are shown from below, with the head of the hippocampus pointing toward the top edge of the figure panel, and the left
hippocampus is on the right-hand side of the panel.

IV. DISCUSSION

The purpose of computing the initial velocity vector fields
is to enable us to analyze the geodesic resulting from the
large-deformation transformation which is not possible from
analyzing displacement vector fields under small-deformation
assumption. In [13] the authors showed that PCA models based
on point data [36] are not always able to generate acceptable
shapes in the space of given shapes. For example, these models
do not account for the curved manifold of shape space, unlike
analysis based on diffeomorphism (i.e., PCA on initial mo-
mentum).

It is interesting to note that there are a number of surface
points in the hippocampus for which and are not signifi-
cantly correlated. This could be a reflection of the fact is cal-
culated using linearizing assumptions whereas is calculated
in the large deformation setting without the linearizing assump-
tions, such that if the points follow “curved” trajectories, then
the displacement field will not correlate with the initial ve-
locity field, .

In this paper, PCA analysis shows a left hippocampal shape
abnormality in the CDR 0.5 group as compared to the CDR 0
group. This is consistent with our previous follow-up study of a
group of CDR 0 subjects who later progress to CDR 0.5 [6]. Dis-
criminant analysis shows a somewhat improved overall classi-
fication rates compared with our previous cross-sectional study
(in [3], 78% for CDR 0, 67% for CDR 0.5), based on the greedy
algorithm implementation of the diffeomorphic mapping and
comparing displacement vector fields: there were 31 overlap-
ping subjects between the two studies, and of these 31 subjects,
six were correctly classified in the current study whereas in the
previous study they were misclassified, and two were misclas-
sified in the current study whereas in the previous study they
were corrected classified. Even though McNemar’s test [37]
did not show disagreement between the two studies ( ,

, ), this was probably due to the small number of
shared subjects. If the number of subjects were to double while

keeping the same correct classification rates, McNemar’s test
would have shown an improvement of the current study over
the previous study ( , , )! Further,
validation using new subjects that are unrelated to training (or
model building) data is needed in the future to test the validity
of this approach.

The results of the current study by no means dispute findings
of recent studies that show longitudinal changes in structure to
be a more sensitive marker than cross-sectional comparisons in
AD [38]–[45]. Rather, based on the findings of this study that
within the cross-sectional setting, statistics on the initial mo-
mentum fields is more powerful than on the linear displace-
ments, we believe that analysis of longitudinal changes of brain
structures based on initial momentum will further improve the
sensitivity and specificity of AD detection. In addition, analysis
of initial momentum based on the subfields of the hippocampus
may give better understanding of the regional abnormalities as-
sociated with DAT, as has been demonstrated by a similar anal-
ysis of linear displacements [7].

REFERENCES

[1] U. Grenander and M. I. Miller, “Computational anatomy: An emerging
discipline,” Quart. Appl. Math., vol. LVI, pp. 617–694, Dec. 1998.

[2] J. G. Csernansky, L. Wang, S. C. Joshi, J. T. Ratnanather, and M. I.
Miller, “Computational anatomy and neuropsychiatric disease: Prob-
abilistic assessment of variation and statistical inference of group dif-
ference, hemispheric asymmetry, and time-dependent change,” Neu-
roImage, vol. 23, pp. S56–S68, 2004.

[3] J. G. Csernansky, L. Wang, S. Joshi, J. P. Miller, M. Gado, D. Kido, D.
McKeel, J. C. Morris, and M. I. Miller, “Early dat is distinguished from
aging by high-dimensional mapping of the hippocampus,” Neurology,
vol. 55, no. 11, pp. 1636–1643, 2000.

[4] L. Wang, J. S. Swank, I. E. Glick, M. H. Gado, M. I. Miller, J. C. Morris,
and J. G. Csernansky, “Changes in hippocampal volume and shape
across time distinguish dementia of the alzheimer type from healthy
aging,” NeuroImage, vol. 20, no. 2, pp. 667–682, 2003.

[5] J. G. Csernansky, J. Hamstra, L. Wang, D. McKeel, J. L. Price, M.
Gado, and J. C. Morris, “Correlations between antemortem hip-
pocampal volume and postmortem neuropathology in AD subjects,”
Alzheimer Dis. Assoc. Disord., vol. 18, no. 4, pp. 190–195, 2004.



470 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 4, APRIL 2007

[6] J. G. Csernansky, L. Wang, J. Swank, J. P. Miller, M. Gado, D. McKeel,
M. I. Miller, and J. C. Morris, “Preclinical detection of alzheimer’s
disease: Hippocampal shape and volume predict dementia onset in the
elderly,” NeuroImage, vol. 25, no. 3, pp. 783–792, 2005.

[7] L. Wang, J. P. Miller, M. H. Gado, D. W. McKeel, M. Rothermich,
M. I. Miller, J. C. Morris, and J. G. Csernansky, “Abnormalities of
hippocampal surface structure in very mild dementia of the alzheimer
type,” NeuroImage, vol. 30, no. 1, pp. 52–60, 2006.

[8] D. D. Holm, J. T. Ratnanather, A. Trouvé, and L. Younes, “Soliton
dynamics in computational anatomy,” NeuroImage, vol. 23, pp.
S170–S178, 2004.

[9] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing large
deformation metric mappings via geodesic flows of diffeomorphisms,”
Int. J. Comput. Vis., vol. 61, no. 2, pp. 139–139, 2005.

[10] M. I. Miller, A. Trouvé, and L. Younes, “Geodesic shooting for com-
putational anatomy,” J. Math. Imag. Vis., vol. 24, no. 2, pp. 209–228,
2006.

[11] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed.
New York: Springer, 1989.

[12] P. Helm, L. Younes, M. F. Beg, D. Ennis, C. Leclercq, O. Faris, E.
McVeigh, M. Miller, and R. Winslow, “Evidence of structural remod-
eling in the dyssynchronous failing heart,” Circ. Res., vol. 98, no. 1, pp.
125–132, 2006.

[13] M. Vaillant, M. I. Miller, L. Younes, and A. Trouvé, “Statistics on dif-
feomorphisms via tangent space representations,” NeuroImage, vol. 23,
pp. S161–S169, 2004.

[14] P. Dupuis, U. Grenander, and M. Miller, “Variational problems on
flows of diffeomorphisms for image matching,” Quart. Appl. Math.,
vol. LVI, pp. 587–600, Sep. 1998.

[15] A. Trouvé, “An infinite dimensional group approach for physics based
models in patterns recognition,” Int. J. Comput. Vis., vol. 28, 3, pp.
213–221, 1995.

[16] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “3D brain map-
ping using a deformable neuroanatomy,” Phys. Med. Biol., vol. 39, pp.
609–618, Mar. 1994.

[17] A. Trouvé, “Diffeomorphism groups and pattern matching in image
analysis,” Int. J. Comput. Vis., vol. 28, no. 3, pp. 213–221, 1998.

[18] M. I. Miller, “Computational anatomy: Shape, growth, and atrophy
comparison via diffeomorphisms,” NeuroImage, vol. 23, pp. S19–S33,
2004.

[19] S. Joshi, A. Banerjee, G. E. Christensan, J. G. Csernansky, J. W. Haller,
M. I. Miller, and L. Wang, “Gaussian random fields on sub-manifolds
for characterizing brain surfaces,” in The 15th International Confer-
ence on Information Processing in Medical Imaging, IPMI’97, ser.
Lecture Notes in Computer Science, J. S. Duncan and G. Gindi, Eds.
Berlin, Germany: Springer-Verlag, 1997, vol. 1230, pp. 381–386.

[20] S. C. Joshi, “Large deformation diffeomorphisms and gaussian random
fields for statistical characterization of brain submanifolds,” Ph.D. dis-
sertation, Dept. Elect. Eng., Sever Inst. Technol., Washington Univ., St.
Louis, MO, 1997.

[21] H. L. Van Trees, Detection, Estimation and Modulation Theory, Part
I. New York: Wiley, 1968.

[22] T. W. Anderson, An Introduction to Multivariate Statistical Anal-
ysis. New York: Wiley, 1958.

[23] J. W. Haller, A. Banerjee, G. E. Christensen, M. Gado, S. C. Joshi,
M. I. Miller, Y. Sheline, M. W. Vannier, and J. G. Csernansky, “3D
hippocampal morphometry by high dimensional transformation of a
neuroanatomical atlas,” Radiology, vol. 202, pp. 504–510, Feb. 1997.

[24] L. Wang, S. C. Joshi, M. I. Miller, and J. G. Csernansky, “Statistical
analysis of hippocampal asymmetry in schizophrenia,” NeuroImage,
vol. 14, pp. 531–545, Sep. 2001.

[25] J. C. Morris, “The clinical dementia rating (CDR): Current version and
scoring rules,” Neurology, vol. 43, no. 11, pp. 2412–2414, 1993.

[26] L. Berg, D. W. McKeel, Jr., J. P. Miller, M. Storandt, E. H. Rubin, J.
C. Morris, J. Baty, M. Coats, J. Norton, A. M. Goate, J. L. Price, M.
Gearing, S. S. Mirra, and A. M. Saunders, “Clinicopathologic studies
in cognitively healthy aging and alzheimer’s disease: Relation of his-
tologic markers to dementia severity, age, sex, and apolipoprotein e
genotype,” Arch. Neurol., vol. 55, no. 3, pp. 326–335, 1998.

[27] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V.
Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current con-
cepts in mild cognitive impairment,” Arch. Neurol., vol. 58, no. 12, pp.
1985–1992, 2001.

[28] M. Storandt, E. A. Grant, J. P. Miller, and J. C. Morris, “Longitudinal
course and neuropathologic outcomes in original vs revised MCI and
in pre-MCI,” Neurology, vol. 67, pp. 467–473, Aug. 2006.

[29] M. Joshi, J. Cui, K. Doolittle, S. Joshi, D. V. Essen, L. Wang, and M.
I. Miller, “Brain segmentation and the generation of cortical surfaces,”
NeuroImage, vol. 9, no. 5, pp. 461–476, 1999.

[30] J. T. Ratnanather, L. Wang, M. B. Nebel, M. Hosakere, X. Han, J. G.
Csernansky, and M. I. Miller, “Validation of semiautomated methods
for quantifying cingulate cortical metrics in schizophrenia,” Psychiatry
Res, vol. 132, no. 1, pp. 53–68, 2004.

[31] S. Joshi, M. Miller, G. Christensen, A. Banerjee, T. Coogan, and U.
Grenander, “Hierarchical brain mapping via a generalized dirichlet so-
lution for mapping brain manifolds,” in Proc. SPIE Int. Symp. Optical
Science, Engineering, and Instrumentation (Vision Geometry IV), San
Diego, CA, 1995, vol. 2573, pp. 278–289.

[32] M. I. Miller, A. Banerjee, G. E. Christensen, S. C. Joshi, N. Khaneja,
U. Grenander, and L. Matejic, “Statistical methods in computational
anatomy,” Statist. Meth. Med. Res., vol. 6, no. 3, pp. 267–299, 1997.

[33] SAS System for Windows, V8 SAS Institute, Inc., Cary, NC, 2000.
[34] D. W. Hosmer Jr. and S. Lemeshow, Applied Logistic Regression,

second ed. New York: Wiley, 2000.
[35] M. Stokes, C. Davis, and G. Koch, Categorical Data Analysis Using

the SAS System, 2nd ed. Cary, NC: SAS Institute, Inc., 2000.
[36] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape

models—Their training and application,” Comput. Vis. Image Under-
standing, vol. 61, pp. 38–59, 1995.

[37] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, pp.
153–157, 1947.

[38] A.-T. Du, N. Schuff, L. L. Chao, J. Kornak, W. J. Jagust, J. H. Kramer,
B. R. Reed, B. L. Miller, D. Norman, H. C. Chui, and M. W. Weiner,
“Age effects on atrophy rates of entorhinal cortex and hippocampus,”
Neurobiol. Aging, vol. 27, pp. 733–740, May 2006.

[39] C. R. Jack, M. M. Shiung, S. D. Weigand, P. C. O’Brien, J. L. Gunter,
B. F. Boeve, D. S. Knopman, G. E. Smith, R. J. Ivnik, E. G. Tangalos,
and R. C. Petersen, “Brain atrophy rates predict subsequent clinical
conversion in normal elderly and amnestic MCI,” Neurology, vol. 65,
pp. 1227–1231, Oct. 2005.

[40] D. Mungas, D. Harvey, B. R. Reed, W. J. Jagust, C. DeCarli, L. Beckett,
W. J. Mack, J. H. Kramer, M. W. Weiner, N. Schuff, and H. C. Chui,
“Longitudinal volumetric MRI change and rate of cognitive decline,”
Neurology, vol. 65, pp. 565–571, Aug. 2005.

[41] A. D. Leow, A. D. Klunder, C. R. Jack, A. W. Toga, A. M. Dale, M. A.
Bernstein, P. J. Britson, J. L. Gunter, C. P. Ward, J. L. Whitwell, B. J.
Borowski, A. S. Fleisher, N. C. Fox, D. Harvey, J. Kornak, N. Schuff, C.
Studholme, G. E. Alexander, M. W. Weiner, and P. M. Thompson, “For
the ADNI preparatory phase study, longitudinal stability of MRI for
mapping brain change using tensor-based morphometry,” NeuroImage,
Feb. 2006.

[42] J. Barnes, A. K. Godbolt, C. Frost, R. G. Boyes, B. F. Jones, R. I. Sc-
ahill, M. N. Rossor, and N. C. Fox, “Atrophy rates of the cingulate gyrus
and hippocampus in AD and FTLD,” Neurobiol. Aging, Jan. 2006.

[43] C. Frost, M. G. Kenward, and N. C. Fox, “The analysis of repeated ’di-
rect’ measures of change illustrated with an application in longitudinal
imaging,” Statist. Med., vol. 23, pp. 3275–3286, Nov. 2004.

[44] J. Barnes, R. I. Scahill, R. G. Boyes, C. Frost, E. B. Lewis, C. L.
Rossor, M. N. Rossor, and N. C. Fox, “Differentiating AD from aging
using semiautomated measurement of hippocampal atrophy rates,”
NeuroImage, vol. 23, pp. 574–581, Oct. 2004.

[45] R. I. Scahill, C. Frost, R. Jenkins, J. L. Whitwell, M. N. Rossor, and N.
C. Fox, “A longitudinal study of brain volume changes in normal aging
using serial registered magnetic resonance imaging,” Arch. Neurol.,
vol. 60, pp. 989–994, Jul. 2003.


